LogoLogo
HomeCommunity
CN master
CN master
  • Introduction
  • Quickstart
    • Pip package
    • Command line interface (CLI)
    • Python SDK
  • Installation
  • Building from source
  • YAML configurations
  • GitHub
  • Examples
    • Python
      • TensorFlow (1.x)
        • MNIST
        • BERT
      • Deeplearning4j (DL4J)
      • DataVec
      • Open Neural Network Exchange (ONNX)
      • Keras (TensorFlow 2.0)
    • Java
      • TensorFlow (2.x)
        • MNIST
        • BERT
      • Deeplearning4j (DL4J)
      • DataVec
      • Open Neural Network Exchange (ONNX)
      • Keras (TensorFlow 2.0)
  • Model monitoring
    • Monitoring with Grafana
  • Steps
    • Data transformation pipeline steps
    • Image loading pipeline steps
    • Python pipeline steps
    • Java pipeline steps
    • Model pipeline steps
  • Server
    • Server
  • Client
    • Python client configuration
Powered by GitBook
On this page
  • Download file
  • Optimize
  • Python script with PyTorch and ONNX Runtime
  • Configure the step
  • Configure the server
  • Start the server
  • Configure the client
  • Inference

Was this helpful?

  1. Examples
  2. Python

Open Neural Network Exchange (ONNX)

This notebook provides an example of serving a model built in PyTorch with ONNX Runtime, a cross-platform, high performance scoring engine for machine learning models.

The Open Neural Network Exchange (ONNX) format is supported by a number of deep learning frameworks, including PyTorch, CNTK and MXNet.

import os 
from urllib.request import urlretrieve 
import sys 
import numpy as np 
from PIL import Image 

import onnx
from onnx import optimizer

from konduit.utils import default_python_path

This page documents two ways to create Konduit Serving configurations with the Python SDK:

  1. Using Python to create a configuration, and

  2. Writing the configuration as a YAML file, then serving it using the Python SDK.

These approaches are documented in separate tabs throughout this page. For example, the following code block shows the imports for each approach in separate tabs:

from konduit import PythonConfig, ServingConfig, InferenceConfiguration, \
PythonStep
from konduit.server import Server
from konduit.client import Client
from konduit.load import server_from_file, client_from_file

Download file

dl_path = os.path.abspath("../data/facedetector/facedetector.onnx")
DOWNLOAD_URL = "https://raw.githubusercontent.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/master/models/onnx/version-RFB-320.onnx"
if not os.path.isfile(dl_path):
    urlretrieve(DOWNLOAD_URL, filename=dl_path)

We start by loading the model and running onnx.checker.check_model to check whether the model has a valid schema.

# Load the ONNX model
model = onnx.load(dl_path)
# model is a onnx.ModelProto object 

onnx.checker.check_model(model)

Optimize

When loading some models, ONNX may return warnings that the model can be further optimized by removing some unused nodes.

onnx_model = onnx.load(dl_path)
passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"]
optimized_model = optimizer.optimize(onnx_model, passes)
onnx.save(optimized_model, dl_path)

Python script with PyTorch and ONNX Runtime

Now that we have an optimized ONNX file, we can serve our model.

The following code:

  • casts it into a PyTorch Tensor,

  • casts the Tensor into a NumPy array, then

  • returns the model's output with ONNX Runtime.

python_code = """

from PIL import Image 
import torchvision.transforms as transforms
import onnxruntime
import os 

dl_path = os.path.abspath("../data/facedetector/facedetector.onnx")

image = Image.fromarray(image.astype('uint8'), 'RGB')
resize = transforms.Resize([240, 320])
img_y = resize(image)
to_tensor = transforms.ToTensor()
img_y = to_tensor(img_y)
img_y.unsqueeze_(0)

def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

ort_session = onnxruntime.InferenceSession(dl_path)
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(img_y)}
ort_outs = ort_session.run(None, ort_inputs)
_, boxes = ort_outs

"""

Configure the step

Defining a PythonConfig

  • Here we use the python_code argument instead of python_code_path, since the code is defined as a string.

work_dir = os.path.abspath('.')

python_config = PythonConfig(
    python_code=python_code,
    python_inputs={"image": "NDARRAY"}, 
    python_outputs={"boxes": "NDARRAY"}, 
    python_path=default_python_path(work_dir)
)

Define a pipeline step with the PythonStep class.

In the .step() method, define a name for this step (input1) and the respective configuration (python_config).

onnx_step = (PythonStep()
             .step(input_name="input1", 
                   python_config=python_config))
steps:
  python_step:
    type: PYTHON
    python_path: C:\\Users\\Skymind AI Berhad\\Documents\\konduit-serving-examples\\notebooks;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\python37.zip;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\DLLs;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch;;C:\\Users\\Skymind AI Berhad\\AppData\\Roaming\\Python\\Python37\\site-packages;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages\\konduit-0.1.4-py3.7.egg;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages\\pyyaml-5.1.2-py3.7-win-amd64.egg;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages\\win32;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages\\win32\\lib;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages\\Pythonwin;C:\\Users\\Skymind AI Berhad\\AppData\\Local\\Continuum\\miniconda3\\envs\\pytorch\\lib\\site-packages\\IPython\\extensions;C:\\Users\\Skymind AI Berhad\\.ipython;C:\\Users\\Skymind AI Berhad\\Documents\\konduit-serving-examples\\notebooks
    python_code: |
      from PIL import Image 
      import torchvision.transforms as transforms
      import onnxruntime
      import os 

      dl_path = os.path.abspath("../data/facedetector/facedetector.onnx")

      image = Image.fromarray(image.astype('uint8'), 'RGB')
      resize = transforms.Resize([240, 320])
      img_y = resize(image)
      to_tensor = transforms.ToTensor()
      img_y = to_tensor(img_y)
      img_y.unsqueeze_(0)

      def to_numpy(tensor):
          return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

      ort_session = onnxruntime.InferenceSession(dl_path)
      ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(img_y)}
      ort_outs = ort_session.run(None, ort_inputs)
      _, boxes = ort_outs

    python_inputs:
      image: NDARRAY
    python_outputs:
      boxes: NDARRAY

We define a single python_step of type PYTHON.

  • python_path specifies the location of Python modules.

  • python_code specifies the Python code to be run. Here, we use a YAML literal block scalar.

  • python_inputs and python_outputsspecifies the data type of the objects in the Python script to be used as input(s) and output(s) respectively.

Models loaded from a YAML configuration do not currently support input and output names for Python steps. To construct configurations with custom input and output names, use the Python SDK.

To locate your Python path, run the following:

from konduit.utils import default_python_path
work_dir = os.path.abspath('.')
print(default_python_path(work_dir))

Configure the server

port = np.random.randint(1000, 65535)

server = Server(
    steps=onnx_step, 
    serving_config=ServingConfig(http_port=port)
)
serving:
  http_port: 1337
  input_data_format: NUMPY
  output_data_format: NUMPY
  log_timings: True
  extra_start_args: -Xmx8g

Start the server

server.start()
Starting server.........

Server has started successfully.
konduit_yaml_path = "../yaml/pytorch.yaml"
server = server_from_file(konduit_yaml_path)
server.start()

Configure the client

Make sure to configure the client after starting the server, so that the Client object can inherit the Server's attributes.

Since the image is passed to the Server as a NumPy array, specify the input and output data format as NUMPY.

client = Client(
    input_data_format='NUMPY',
    return_output_data_format='NUMPY',
    output_data_format="RAW",
    port=port
)

Add the following to your YAML configuration file:

client:
    input_data_format: NUMPY
    output_data_format: RAW
    return_output_data_format: NUMPY
    port: 1337

Use client_from_file to create a Client object:

konduit_yaml_path = "../yaml/pytorch.yaml"
client = client_from_file(konduit_yaml_path)

Inference

Load a sample image using PIL/Pillow and send the image to the server for prediction using the predict() method of the Client class.

im = Image.open("../data/facedetector/1.jpg")
im = np.array(im).astype("int")
output = client.predict(
    {"input1": im}
)
print(output)
[[[ 0.00601701  0.00688479  0.02177745  0.03408115]
  [-0.0018133  -0.00657785  0.03698186  0.05206966]
  [-0.01035942 -0.01786287  0.04902049  0.06799769]
  ...
  [ 0.7294515   0.6165271   1.0584102   1.1059598 ]
  [ 0.65046376  0.48442802  1.141786    1.2248938 ]
  [ 0.5633501   0.37209463  1.2047783   1.2747201 ]]]

Finally, we stop the server:

server.stop()
PreviousDataVecNextKeras (TensorFlow 2.0)

Last updated 5 years ago

Was this helpful?

For the purposes of this example, we use ONNX model files from by Linzaer, a lightweight facedetection model designed for edge computing devices.

The following content is based on the PyTorch tutorial , with modifications.

Use ONNX's optimizer to optimize your ONNX file. The code below is adapted from this .

Note that the API for optimizing models in ONNX Runtime is experimental, and .

transforms a image into a 240 x 320 image,

adds an extra dimension with ,

Define the inputs and outputs as dictionaries, where the keys represent objects in the server's Python environment, and the values represent data types (Python data structures), defined as strings. See for supported data types.

The default Python path includes NumPy and a basic set of modules. However, for this example, we also require the Pillow, PyTorch and ONNX Runtime modules. See the for additional documentation on Python paths, and refer to the for recommended installation steps.

Ultra-Light-Fast-Generic-Face-Detector-1MB
Exporting a Model from PyTorch to ONNX and Running it using ONNX Runtime
GitHub comment
may change
PIL
unsqueeze
https://serving.oss.konduit.ai/python
PyTorch quickstart
Python pipeline steps page