LogoLogo
HomeCommunity
EN master
EN master
  • Introduction
  • Components
  • Quickstart
    • Using Docker
    • Using Java SDK
    • Using Python SDK
    • Using CLI
  • Building from source
  • Installing Binaries
  • Configurations
    • JSON
    • YAML
  • GitHub
  • Examples
    • Java
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
          • Keras Step
          • ONNX Step
          • Tensorflow Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • Python
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • IPython Notebook
      • Basic
      • ONNX
        • Pytorch (IRIS)
        • Pytorch (MNIST)
      • Keras
      • Tensorflow
      • DL4J
    • CLI
      • Use-Cases
        • Creating a Sequence Pipeline
        • Creating a Graph Pipeline
        • Create Server URL with Inspection Queries
        • Adding Extra Classpaths
        • Multiple Instances of a Server
      • Commands
        • Serve Command
        • Logs Command
        • Inspect Command
        • Profile Command
  • How-To Guides
    • Serving a BMI Model
      • With HTML Content
    • Performing Object Detection
    • RPA Use-Case
    • Showing Metrics
      • Prometheus
      • Grafana
  • References
    • Pipeline Steps
      • IMAGE_TO_NDARRAY
      • IMAGE_CROP
      • IMAGE_RESIZE
      • DEEPLEARNINGL4J
      • KERAS
      • ND4JTENSORFLOW
      • ONNX
      • TENSORFLOW
      • SAMEDIFF
      • CLASSIFIER_OUTPUT
      • REGRESSION_OUTPUT
      • LOGGING
      • BOUNDING_BOX_FILTER
      • BOUNDING_BOX_TO_POINT
      • CROP_GRID
      • CROP_FIXED_GRID
      • DRAW_BOUNDING_BOX
      • DRAW_FACE_KEY_POINT
      • DRAW_GRID
      • DRAW_FIXED_GRID
      • DRAW_HEATMAP
      • DRAW_POINTS
      • DRAW_SEGMENTATION
      • EXTRACT_BOUNDING_BOX
      • SSD_TO_BBOX
      • YOLO_BBOX
      • RELATIVE_TO_ABSOLUTE
      • SHOW_IMAGE
      • FRAME_CAPTURE
      • VIDEO_CAPTURE
      • PERSPECTIVE_TRANSFORM
    • Inference Configuration
      • MQTT Configuration
      • KAFKA Configuration
    • CLI Commands
      • Serve Command
      • Logs Command
      • Inspect Command
      • Pythonpaths Command
      • Build Command
      • Config Command
      • Predict Command
      • Profile Command
  • Change Logs
    • Version 0.1.0
  • Contribution Guidelines
Powered by GitBook
On this page

Was this helpful?

  1. Examples
  2. CLI
  3. Commands

Inspect Command

Examples of CLI with inspect command

The inspect command can be used to inspect the details of a particular Konduit Server based on given the server's id. This command helps in getting the details of a server configuration which can be further filter and formatted through a query string. You can specify the query string with either the --query or -q option.

Examples

The following command will inspect the whole configuration of server with an id of 'inf_server':

$ konduit inspect inf_server

The command will let you inspect the whole configuration setting based on your JSON/YAML file:

{
  "host" : "localhost",
  "port" : 42849,
  "useSsl" : false,
  "protocol" : "HTTP",
  "staticContentRoot" : "static-content",
  "staticContentUrl" : "/static-content",
  "staticContentIndexPage" : "/index.html",
  "kafkaConfiguration" : {
    "startHttpServerForKafka" : true,
    "httpKafkaHost" : "localhost",
    "httpKafkaPort" : 0,
    "consumerTopicName" : "inference-in",
    "consumerKeyDeserializerClass" : "io.vertx.kafka.client.serialization.JsonObjectDeserializer",
    "consumerValueDeserializerClass" : "io.vertx.kafka.client.serialization.JsonObjectDeserializer",
    "consumerGroupId" : "konduit-serving-consumer-group",
    "consumerAutoOffsetReset" : "earliest",
    "consumerAutoCommit" : "true",
    "producerTopicName" : "inference-out",
    "producerKeySerializerClass" : "io.vertx.kafka.client.serialization.JsonObjectSerializer",
    "producerValueSerializerClass" : "io.vertx.kafka.client.serialization.JsonObjectSerializer",
    "producerAcks" : "1"
  },
  "mqttConfiguration" : { },
  "customEndpoints" : [ ],
  "pipeline" : {
    "steps" : [ {
      "@type" : "IMAGE_TO_NDARRAY",
      "config" : {
        "height" : 28,
        "width" : 28,
        "dataType" : "FLOAT",
        "includeMinibatchDim" : true,
        "aspectRatioHandling" : "CENTER_CROP",
        "format" : "CHANNELS_FIRST",
        "channelLayout" : "GRAYSCALE",
        "normalization" : {
          "type" : "SCALE"
        },
        "listHandling" : "NONE"
      },
      "keys" : [ "image" ],
      "outputNames" : [ "layer0" ],
      "keepOtherValues" : true,
      "metadata" : false,
      "metadataKey" : "@ImageToNDArrayStepMetadata"
    }, {
      "@type" : "LOGGING",
      "logLevel" : "INFO",
      "log" : "KEYS_AND_VALUES"
    }, {
      "@type" : "DEEPLEARNING4J",
      "modelUri" : "dl4j-mnist.zip",
      "inputNames" : [ "layer0" ],
      "outputNames" : [ "layer5" ]
    }, {
      "@type" : "CLASSIFIER_OUTPUT",
      "inputName" : "layer5",
      "returnLabel" : true,
      "returnIndex" : true,
      "returnProb" : true,
      "labelName" : "label",
      "indexName" : "index",
      "probName" : "prob",
      "labels" : [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ],
      "allProbabilities" : false
    } ]
  }
}

You can use --query command flag to get specific fields of the server configuration. For example, the following command will print the host and port of the server:

$ konduit inspect inf_server --query {host}:{port}

You'll get the output based on what you have specified:

localhost:42849

You can also use same command flag to get pipeline details, for example:

$ konduit inspect inf_server --query {host}:{port}-{pipeline}

You'll be able to see similar output including pipeline details like this:

localhost:42849-{"steps":[{"@type":"IMAGE_TO_NDARRAY","config":{"height":28,"width":28,"dataType":"FLOAT","includeMinibatchDim":true,"aspectRatioHandling":"CENTER_CROP","format":"CHANNELS_FIRST","channelLayout":"GRAYSCALE","normalization":{"type":"SCALE"},"listHandling":"NONE"},"keys":["image"],"outputNames":["layer0"],"keepOtherValues":true,"metadata":false,"metadataKey":"@ImageToNDArrayStepMetadata"},{"@type":"LOGGING","logLevel":"INFO","log":"KEYS_AND_VALUES"},{"@type":"DEEPLEARNING4J","modelUri":"dl4j-mnist.zip","inputNames":["layer0"],"outputNames":["layer5"]},{"@type":"CLASSIFIER_OUTPUT","inputName":"layer5","returnLabel":true,"returnIndex":true,"returnProb":true,"labelName":"label","indexName":"index","probName":"prob","labels":["0","1","2","3","4","5","6","7","8","9"],"allProbabilities":false}]}
PreviousLogs CommandNextProfile Command

Last updated 4 years ago

Was this helpful?