The following command will inspect the whole configuration of server with an id of 'inf_server':
Copy $ konduit inspect inf_server
The command will let you inspect the whole configuration setting based on your JSON/YAML file:
Copy {
"host" : "localhost",
"port" : 42849,
"useSsl" : false,
"protocol" : "HTTP",
"staticContentRoot" : "static-content",
"staticContentUrl" : "/static-content",
"staticContentIndexPage" : "/index.html",
"kafkaConfiguration" : {
"startHttpServerForKafka" : true,
"httpKafkaHost" : "localhost",
"httpKafkaPort" : 0,
"consumerTopicName" : "inference-in",
"consumerKeyDeserializerClass" : "io.vertx.kafka.client.serialization.JsonObjectDeserializer",
"consumerValueDeserializerClass" : "io.vertx.kafka.client.serialization.JsonObjectDeserializer",
"consumerGroupId" : "konduit-serving-consumer-group",
"consumerAutoOffsetReset" : "earliest",
"consumerAutoCommit" : "true",
"producerTopicName" : "inference-out",
"producerKeySerializerClass" : "io.vertx.kafka.client.serialization.JsonObjectSerializer",
"producerValueSerializerClass" : "io.vertx.kafka.client.serialization.JsonObjectSerializer",
"producerAcks" : "1"
},
"mqttConfiguration" : { },
"customEndpoints" : [ ],
"pipeline" : {
"steps" : [ {
"@type" : "IMAGE_TO_NDARRAY",
"config" : {
"height" : 28,
"width" : 28,
"dataType" : "FLOAT",
"includeMinibatchDim" : true,
"aspectRatioHandling" : "CENTER_CROP",
"format" : "CHANNELS_FIRST",
"channelLayout" : "GRAYSCALE",
"normalization" : {
"type" : "SCALE"
},
"listHandling" : "NONE"
},
"keys" : [ "image" ],
"outputNames" : [ "layer0" ],
"keepOtherValues" : true,
"metadata" : false,
"metadataKey" : "@ImageToNDArrayStepMetadata"
}, {
"@type" : "LOGGING",
"logLevel" : "INFO",
"log" : "KEYS_AND_VALUES"
}, {
"@type" : "DEEPLEARNING4J",
"modelUri" : "dl4j-mnist.zip",
"inputNames" : [ "layer0" ],
"outputNames" : [ "layer5" ]
}, {
"@type" : "CLASSIFIER_OUTPUT",
"inputName" : "layer5",
"returnLabel" : true,
"returnIndex" : true,
"returnProb" : true,
"labelName" : "label",
"indexName" : "index",
"probName" : "prob",
"labels" : [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ],
"allProbabilities" : false
} ]
}
}
Copy $ konduit inspect inf_server --query {host}:{port}
Copy $ konduit inspect inf_server --query {host}:{port}-{pipeline}
Copy localhost:42849-{"steps":[{"@type":"IMAGE_TO_NDARRAY","config":{"height":28,"width":28,"dataType":"FLOAT","includeMinibatchDim":true,"aspectRatioHandling":"CENTER_CROP","format":"CHANNELS_FIRST","channelLayout":"GRAYSCALE","normalization":{"type":"SCALE"},"listHandling":"NONE"},"keys":["image"],"outputNames":["layer0"],"keepOtherValues":true,"metadata":false,"metadataKey":"@ImageToNDArrayStepMetadata"},{"@type":"LOGGING","logLevel":"INFO","log":"KEYS_AND_VALUES"},{"@type":"DEEPLEARNING4J","modelUri":"dl4j-mnist.zip","inputNames":["layer0"],"outputNames":["layer5"]},{"@type":"CLASSIFIER_OUTPUT","inputName":"layer5","returnLabel":true,"returnIndex":true,"returnProb":true,"labelName":"label","indexName":"index","probName":"prob","labels":["0","1","2","3","4","5","6","7","8","9"],"allProbabilities":false}]}