Tensorflow Step
Example of applying Tensorflow Step
import ai.konduit.serving.data.image.convert.ImageToNDArrayConfig;
import ai.konduit.serving.data.image.convert.config.AspectRatioHandling;
import ai.konduit.serving.data.image.convert.config.ImageNormalization;
import ai.konduit.serving.data.image.convert.config.NDChannelLayout;
import ai.konduit.serving.data.image.convert.config.NDFormat;
import ai.konduit.serving.data.image.step.ndarray.ImageToNDArrayStep;
import ai.konduit.serving.examples.utils.Train;
import ai.konduit.serving.models.nd4j.tensorflow.step.Nd4jTensorFlowStep;
import ai.konduit.serving.pipeline.api.data.NDArrayType;
import ai.konduit.serving.pipeline.impl.pipeline.SequencePipeline;
import ai.konduit.serving.pipeline.impl.step.ml.classifier.ClassifierOutputStep;
import ai.konduit.serving.vertx.api.DeployKonduitServing;
import ai.konduit.serving.vertx.config.InferenceConfiguration;
import ai.konduit.serving.vertx.config.InferenceDeploymentResult;
import com.mashape.unirest.http.Unirest;
import com.mashape.unirest.http.exceptions.UnirestException;
import io.vertx.core.DeploymentOptions;
import io.vertx.core.VertxOptions;
import org.nd4j.common.io.ClassPathResource;
import java.io.IOException;
import java.util.Arrays;Configure the pipeline step
Deploy the server
Last updated
Was this helpful?