LogoLogo
HomeCommunity
EN master
EN master
  • Introduction
  • Components
  • Quickstart
    • Using Docker
    • Using Java SDK
    • Using Python SDK
    • Using CLI
  • Building from source
  • Installing Binaries
  • Configurations
    • JSON
    • YAML
  • GitHub
  • Examples
    • Java
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
          • Keras Step
          • ONNX Step
          • Tensorflow Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • Python
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • IPython Notebook
      • Basic
      • ONNX
        • Pytorch (IRIS)
        • Pytorch (MNIST)
      • Keras
      • Tensorflow
      • DL4J
    • CLI
      • Use-Cases
        • Creating a Sequence Pipeline
        • Creating a Graph Pipeline
        • Create Server URL with Inspection Queries
        • Adding Extra Classpaths
        • Multiple Instances of a Server
      • Commands
        • Serve Command
        • Logs Command
        • Inspect Command
        • Profile Command
  • How-To Guides
    • Serving a BMI Model
      • With HTML Content
    • Performing Object Detection
    • RPA Use-Case
    • Showing Metrics
      • Prometheus
      • Grafana
  • References
    • Pipeline Steps
      • IMAGE_TO_NDARRAY
      • IMAGE_CROP
      • IMAGE_RESIZE
      • DEEPLEARNINGL4J
      • KERAS
      • ND4JTENSORFLOW
      • ONNX
      • TENSORFLOW
      • SAMEDIFF
      • CLASSIFIER_OUTPUT
      • REGRESSION_OUTPUT
      • LOGGING
      • BOUNDING_BOX_FILTER
      • BOUNDING_BOX_TO_POINT
      • CROP_GRID
      • CROP_FIXED_GRID
      • DRAW_BOUNDING_BOX
      • DRAW_FACE_KEY_POINT
      • DRAW_GRID
      • DRAW_FIXED_GRID
      • DRAW_HEATMAP
      • DRAW_POINTS
      • DRAW_SEGMENTATION
      • EXTRACT_BOUNDING_BOX
      • SSD_TO_BBOX
      • YOLO_BBOX
      • RELATIVE_TO_ABSOLUTE
      • SHOW_IMAGE
      • FRAME_CAPTURE
      • VIDEO_CAPTURE
      • PERSPECTIVE_TRANSFORM
    • Inference Configuration
      • MQTT Configuration
      • KAFKA Configuration
    • CLI Commands
      • Serve Command
      • Logs Command
      • Inspect Command
      • Pythonpaths Command
      • Build Command
      • Config Command
      • Predict Command
      • Profile Command
  • Change Logs
    • Version 0.1.0
  • Contribution Guidelines
Powered by GitBook
On this page

Was this helpful?

  1. References
  2. Pipeline Steps

IMAGE_CROP

ImageCropStep is used to crop an image to the specified rectangular region. The crop region may be specified in one of two ways:

  1. Via a bounding box, or

  2. Via a list of points of length 2, containing the top-left and bottom-right crop locations.

These may be specified statically (i.e., fixed crop region) via cropBox or cropPoints property, or dynamically via cropName (which may specify a bounding box or list of point in the input data instance).

Furthermore, the bounding box and corner point coordinates may be specified in terms of either pixels or fraction of image - specified via the coordsArePixels property. Note that if the crop region falls partly outside the input image region, black padding will be added as necessary to keep the requested output size.

Configs

Descriptions

imageName

Name of the Image or in the list, List<Image> field to crop.

cropName

Name of the input Data field used for dynamic cropping. May be a BoundingBox or List<Point>.

cropPoints

Static crop region defined as a list of point, List<Point>.

cropBox

Static crop region defined as a bounding box, BoundingBox.

coordsArePixels

Weather the crop region (BoundingBox / List<Point>) are specified in pixels, or fraction of image.

PreviousIMAGE_TO_NDARRAYNextIMAGE_RESIZE

Last updated 4 years ago

Was this helpful?