LogoLogo
HomeCommunity
EN master
EN master
  • Introduction
  • Components
  • Quickstart
    • Using Docker
    • Using Java SDK
    • Using Python SDK
    • Using CLI
  • Building from source
  • Installing Binaries
  • Configurations
    • JSON
    • YAML
  • GitHub
  • Examples
    • Java
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
          • Keras Step
          • ONNX Step
          • Tensorflow Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • Python
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • IPython Notebook
      • Basic
      • ONNX
        • Pytorch (IRIS)
        • Pytorch (MNIST)
      • Keras
      • Tensorflow
      • DL4J
    • CLI
      • Use-Cases
        • Creating a Sequence Pipeline
        • Creating a Graph Pipeline
        • Create Server URL with Inspection Queries
        • Adding Extra Classpaths
        • Multiple Instances of a Server
      • Commands
        • Serve Command
        • Logs Command
        • Inspect Command
        • Profile Command
  • How-To Guides
    • Serving a BMI Model
      • With HTML Content
    • Performing Object Detection
    • RPA Use-Case
    • Showing Metrics
      • Prometheus
      • Grafana
  • References
    • Pipeline Steps
      • IMAGE_TO_NDARRAY
      • IMAGE_CROP
      • IMAGE_RESIZE
      • DEEPLEARNINGL4J
      • KERAS
      • ND4JTENSORFLOW
      • ONNX
      • TENSORFLOW
      • SAMEDIFF
      • CLASSIFIER_OUTPUT
      • REGRESSION_OUTPUT
      • LOGGING
      • BOUNDING_BOX_FILTER
      • BOUNDING_BOX_TO_POINT
      • CROP_GRID
      • CROP_FIXED_GRID
      • DRAW_BOUNDING_BOX
      • DRAW_FACE_KEY_POINT
      • DRAW_GRID
      • DRAW_FIXED_GRID
      • DRAW_HEATMAP
      • DRAW_POINTS
      • DRAW_SEGMENTATION
      • EXTRACT_BOUNDING_BOX
      • SSD_TO_BBOX
      • YOLO_BBOX
      • RELATIVE_TO_ABSOLUTE
      • SHOW_IMAGE
      • FRAME_CAPTURE
      • VIDEO_CAPTURE
      • PERSPECTIVE_TRANSFORM
    • Inference Configuration
      • MQTT Configuration
      • KAFKA Configuration
    • CLI Commands
      • Serve Command
      • Logs Command
      • Inspect Command
      • Pythonpaths Command
      • Build Command
      • Config Command
      • Predict Command
      • Profile Command
  • Change Logs
    • Version 0.1.0
  • Contribution Guidelines
Powered by GitBook
On this page

Was this helpful?

  1. References
  2. Pipeline Steps

IMAGE_RESIZE

ImageResizeStep is a pipeline step that resizes an image, scaling up or down as needed to comply with the specified output height/width. Usually, both height and width are specified. However, if only one is specified, the other value is calculated based on the aspect ration of the input image. When both height and width are specified, and the aspect ratios of the input doesn't match the aspect ratio of the output, (for example, 100x200 in, 200x200 out) the aspectRatioHandling setting is used to determine how to handle this situation.

Note that the names of the inputs data fields to resize may or may not be specified. If no value is provided for inputNames configuration, all input images fields in the input Data instance will be resized, regardless of name. If inputNames is specified, only those fields with those names will be resized.

Configs

Descriptions

inputNames

Name of the input keys whose values contain images from the previous step.

height

Resize height.

width

Resize width.

aspectRatioHandling

An enum to define how to handle the aspect ratio when the aspect ratio doesn't match with that of the input image. Default value is STRETCH.

PreviousIMAGE_CROPNextDEEPLEARNINGL4J

Last updated 4 years ago

Was this helpful?