The example starts with configuring the pipeline step in the inference configuration and then deploying the server using the Keras model with Konduit-Serving.
Add ImageToNDArrayStep() which are pre-processing step into the pipeline as a need to convert an input image to an array and must specified with a shape size. We'll also need to include KerasStep into the pipeline of the inference configuration. Specify the following:
modelUri : the model file path
inputNames : names for model's input layer
outputNames : names for model's output layer
//include pipeline step into the Inference ConfigurationinferenceConfiguration.pipeline(SequencePipeline.builder().add(newImageToNDArrayStep()//add ImageToNDArrayStep() into pipeline to set image to NDArray for input.config(newImageToNDArrayConfig()//image configuration.width(28).height(28).includeMinibatchDim(true).channelLayout(NDChannelLayout.GRAYSCALE).format(NDFormat.CHANNELS_LAST) ).keys("image").outputNames("input_layer")).add(newKerasStep()//add KerasStep into pipeline.modelUri(modelTrainResult.modelPath()).inputNames(modelTrainResult.inputNames()).outputNames(modelTrainResult.outputNames()) ).build());
Deploy the server
Let's deploy the model in the server by calling DeployKonduitServing with the configuration made before. A callback function is implemented to get a response only after a successful or failed server deployment inside the handler block.
//deploy the model in serverDeployKonduitServing.deploy(newVertxOptions(),newDeploymentOptions(), inferenceConfiguration, handler -> {if (handler.succeeded()) { // If the server is sucessfully running// Getting the result of the deploymentInferenceDeploymentResult inferenceDeploymentResult =handler.result();int runnningPort =inferenceDeploymentResult.getActualPort();String deploymentId =inferenceDeploymentResult.getDeploymentId();System.out.format("The server is running on port %s with deployment id of %s%n", runnningPort, deploymentId);try {String result;try { result =Unirest.post(String.format("http://localhost:%s/predict", runnningPort)).header("Accept","application/json").field("image",newClassPathResource("inputs/mnist-image-2.jpg").getFile(),"image/jpg").asString().getBody();System.out.format("Result from server : %s%n", result);System.exit(0); } catch (IOException e) {e.printStackTrace();System.exit(1); } } catch (UnirestException e) {e.printStackTrace();System.exit(1); } } else { // If the server failed to runSystem.out.println(handler.cause().getMessage());System.exit(1); } });
Note that we consider only one test input image in this example for inference to show the model's deployment in Konduit-Serving. After the above execution, you can check for the below output to confirm the successful server deployment.
The server is running on port 46233 with deployment id of f9b7a616-2d54-4814-86ac-1f888052ef34
Result from server : {
"output_layer" : [ [ 6.086365E-10, 6.585195E-11, 7.845706E-7, 1.8983503E-6, 2.3600207E-11, 1.6447022E-8, 4.0799048E-11, 2.2013203E-12, 0.99999714, 6.1216234E-8 ] ]
}
Process finished with exit code 0
The complete inference configuration in JSON format is as follows.