LogoLogo
HomeCommunity
EN master
EN master
  • Introduction
  • Components
  • Quickstart
    • Using Docker
    • Using Java SDK
    • Using Python SDK
    • Using CLI
  • Building from source
  • Installing Binaries
  • Configurations
    • JSON
    • YAML
  • GitHub
  • Examples
    • Java
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
          • Keras Step
          • ONNX Step
          • Tensorflow Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • Python
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • IPython Notebook
      • Basic
      • ONNX
        • Pytorch (IRIS)
        • Pytorch (MNIST)
      • Keras
      • Tensorflow
      • DL4J
    • CLI
      • Use-Cases
        • Creating a Sequence Pipeline
        • Creating a Graph Pipeline
        • Create Server URL with Inspection Queries
        • Adding Extra Classpaths
        • Multiple Instances of a Server
      • Commands
        • Serve Command
        • Logs Command
        • Inspect Command
        • Profile Command
  • How-To Guides
    • Serving a BMI Model
      • With HTML Content
    • Performing Object Detection
    • RPA Use-Case
    • Showing Metrics
      • Prometheus
      • Grafana
  • References
    • Pipeline Steps
      • IMAGE_TO_NDARRAY
      • IMAGE_CROP
      • IMAGE_RESIZE
      • DEEPLEARNINGL4J
      • KERAS
      • ND4JTENSORFLOW
      • ONNX
      • TENSORFLOW
      • SAMEDIFF
      • CLASSIFIER_OUTPUT
      • REGRESSION_OUTPUT
      • LOGGING
      • BOUNDING_BOX_FILTER
      • BOUNDING_BOX_TO_POINT
      • CROP_GRID
      • CROP_FIXED_GRID
      • DRAW_BOUNDING_BOX
      • DRAW_FACE_KEY_POINT
      • DRAW_GRID
      • DRAW_FIXED_GRID
      • DRAW_HEATMAP
      • DRAW_POINTS
      • DRAW_SEGMENTATION
      • EXTRACT_BOUNDING_BOX
      • SSD_TO_BBOX
      • YOLO_BBOX
      • RELATIVE_TO_ABSOLUTE
      • SHOW_IMAGE
      • FRAME_CAPTURE
      • VIDEO_CAPTURE
      • PERSPECTIVE_TRANSFORM
    • Inference Configuration
      • MQTT Configuration
      • KAFKA Configuration
    • CLI Commands
      • Serve Command
      • Logs Command
      • Inspect Command
      • Pythonpaths Command
      • Build Command
      • Config Command
      • Predict Command
      • Profile Command
  • Change Logs
    • Version 0.1.0
  • Contribution Guidelines
Powered by GitBook
On this page

Was this helpful?

  1. Examples
  2. CLI
  3. Commands

Logs Command

Examples of CLI with logs command

Thelogs command can be used to view the logs of a particular Konduit Server, given a server id. There are a couple other options to use with the logs command.

Examples

The following command outputs the log file contents of server with an id of 'inf_server':

$ konduit logs inf_server

The output of log file will print the last 10 lines by default:

      "labelName" : "label",
      "indexName" : "index",
      "probName" : "prob",
      "labels" : [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ],
      "allProbabilities" : false
    } ]
  }
}
17:18:15.938 [vert.x-eventloop-thread-0] INFO  a.k.s.v.p.h.v.InferenceVerticleHttp - Inference HTTP server is listening on host: 'localhost'
17:18:15.938 [vert.x-eventloop-thread-0] INFO  a.k.s.v.p.h.v.InferenceVerticleHttp - Inference HTTP server started on port 42849 with 4 pipeline steps

You can also output and tail the log file contents of server with an id of 'inf_server' by adding -f or --follow option:

$ konduit logs inf_server --follow

You'll notice the output is similar to konduit logs inf_server but the text cursor is still in the tail of the printed logs. You can press CTRL + C to exit. To view the last 50 lines of the server logs, run the following command:

$ konduit logs inf_server --lines 50

You'll be able to see the last 50 lines of output

    "producerAcks" : "1"
  },
  "mqttConfiguration" : { },
  "customEndpoints" : [ ],
  "pipeline" : {
    "steps" : [ {
      "@type" : "IMAGE_TO_NDARRAY",
      "config" : {
        "height" : 28,
        "width" : 28,
        "dataType" : "FLOAT",
        "includeMinibatchDim" : true,
        "aspectRatioHandling" : "CENTER_CROP",
        "format" : "CHANNELS_FIRST",
        "channelLayout" : "GRAYSCALE",
        "normalization" : {
          "type" : "SCALE"
        },
        "listHandling" : "NONE"
      },
      "keys" : [ "image" ],
      "outputNames" : [ "layer0" ],
      "keepOtherValues" : true,
      "metadata" : false,
      "metadataKey" : "@ImageToNDArrayStepMetadata"
    }, {
      "@type" : "LOGGING",
      "logLevel" : "INFO",
      "log" : "KEYS_AND_VALUES"
    }, {
      "@type" : "DEEPLEARNING4J",
      "modelUri" : "dl4j-mnist.zip",
      "inputNames" : [ "layer0" ],
      "outputNames" : [ "layer5" ]
    }, {
      "@type" : "CLASSIFIER_OUTPUT",
      "inputName" : "layer5",
      "returnLabel" : true,
      "returnIndex" : true,
      "returnProb" : true,
      "labelName" : "label",
      "indexName" : "index",
      "probName" : "prob",
      "labels" : [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ],
      "allProbabilities" : false
    } ]
  }
}
17:18:15.938 [vert.x-eventloop-thread-0] INFO  a.k.s.v.p.h.v.InferenceVerticleHttp - Inference HTTP server is listening on host: 'localhost'
17:18:15.938 [vert.x-eventloop-thread-0] INFO  a.k.s.v.p.h.v.InferenceVerticleHttp - Inference HTTP server started on port 42849 with 4 pipeline steps

PreviousServe CommandNextInspect Command

Last updated 4 years ago

Was this helpful?