LogoLogo
HomeCommunity
EN master
EN master
  • Introduction
  • Components
  • Quickstart
    • Using Docker
    • Using Java SDK
    • Using Python SDK
    • Using CLI
  • Building from source
  • Installing Binaries
  • Configurations
    • JSON
    • YAML
  • GitHub
  • Examples
    • Java
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
          • Keras Step
          • ONNX Step
          • Tensorflow Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • Python
      • Server
        • Pipeline Steps
          • Image To NDArray Step
          • Python Step
          • DL4J Step
        • Sequence Pipeline
        • Graph Pipeline
      • Client
        • Running Predictions
        • Inspecting a Server
    • IPython Notebook
      • Basic
      • ONNX
        • Pytorch (IRIS)
        • Pytorch (MNIST)
      • Keras
      • Tensorflow
      • DL4J
    • CLI
      • Use-Cases
        • Creating a Sequence Pipeline
        • Creating a Graph Pipeline
        • Create Server URL with Inspection Queries
        • Adding Extra Classpaths
        • Multiple Instances of a Server
      • Commands
        • Serve Command
        • Logs Command
        • Inspect Command
        • Profile Command
  • How-To Guides
    • Serving a BMI Model
      • With HTML Content
    • Performing Object Detection
    • RPA Use-Case
    • Showing Metrics
      • Prometheus
      • Grafana
  • References
    • Pipeline Steps
      • IMAGE_TO_NDARRAY
      • IMAGE_CROP
      • IMAGE_RESIZE
      • DEEPLEARNINGL4J
      • KERAS
      • ND4JTENSORFLOW
      • ONNX
      • TENSORFLOW
      • SAMEDIFF
      • CLASSIFIER_OUTPUT
      • REGRESSION_OUTPUT
      • LOGGING
      • BOUNDING_BOX_FILTER
      • BOUNDING_BOX_TO_POINT
      • CROP_GRID
      • CROP_FIXED_GRID
      • DRAW_BOUNDING_BOX
      • DRAW_FACE_KEY_POINT
      • DRAW_GRID
      • DRAW_FIXED_GRID
      • DRAW_HEATMAP
      • DRAW_POINTS
      • DRAW_SEGMENTATION
      • EXTRACT_BOUNDING_BOX
      • SSD_TO_BBOX
      • YOLO_BBOX
      • RELATIVE_TO_ABSOLUTE
      • SHOW_IMAGE
      • FRAME_CAPTURE
      • VIDEO_CAPTURE
      • PERSPECTIVE_TRANSFORM
    • Inference Configuration
      • MQTT Configuration
      • KAFKA Configuration
    • CLI Commands
      • Serve Command
      • Logs Command
      • Inspect Command
      • Pythonpaths Command
      • Build Command
      • Config Command
      • Predict Command
      • Profile Command
  • Change Logs
    • Version 0.1.0
  • Contribution Guidelines
Powered by GitBook
On this page

Was this helpful?

Quickstart

Quickstart guide to start using Konduit-Serving

PreviousComponentsNextUsing Docker

Last updated 4 years ago

Was this helpful?

Konduit-Serving is a framework-agnostic model serving solution focused on deploying machine learning pipelines to production. The Python SDK allows data scientists to quickly test machine learning deployment scenarios, bridging the gap between data science teams and DevOps.

Before running these commands, set up Konduit Serving according to the installation instructions on the and page:

Configuration Files

Konduit Serving configuration files consist of serving, steps and client components. Save the configuration below as a text file named hello-world.yaml in your current directory:

serving:
  http_port: 1337
  input_data_format: NUMPY
  output_data_format: NUMPY
steps:
  python_step:
    type: PYTHON
    python_code: |
      first += 2
      second = first
    python_inputs:
      first: NDARRAY
    python_outputs:
      second: NDARRAY
client:
    port: 1337

The pages in this section show you how to start and interact with a Konduit Serving instance. For these examples, the Konduit Serving instance and client are on the same machine.

For quick experimentation, check out the quickstart for the command line interface (CLI):

To access additional options, you will want to configure Konduit Serving instances with the Python SDK. Start with the Python quickstart:

Building From Source
Installation
Using CLI
Using Python SDK